
CS 320: Concepts of Programming Languages

Wayne Snyder
Computer Science Department

Boston University

Lecture 06: Programming with Functions
o Functions as First-Class Values
o Examples of functional programming: Map and Filter
o Lambda Expressions
o Functions on functions
o Modules

Reading: Hutton Ch. 4, beginning of Ch. 7

Programming with Functions
In functional programming, we want to treat functions as “first-class values,” i.e.,
having the same “rights” as any other kind of data, i.e, functions, like data, can be

o passed as parameters
o stored in data structures
o represented as values without having to assign to a name.
o manipulated by other functions to create new functions

In most programming languages, functions are not treated in this way, but we
will find that in Haskell this is pursued to the greatest extend possible.

This opens up a world of possibilities for algorithms that are not possible in other
languages; often these algorithms are more concise and elegant than in other
languages. Of course this is a matter of taste! We will at least explore this
possibility, and add to your toolkit of possibilities for programming, and you
make up your mind after the course is over!

Functional Programming Paradigms
Let us first consider what it would mean to allow functions to be passed as
parameters... suppose we wanted to increment every member of an Integer list:

incr :: Integer -> Integer
incr x = x + 1

incrList :: [Integer] -> [Integer]
incrList [] = []
incrList (x:xs) = (incr x):(incrList xs)

Main> incrList [3,4]
[4,5]

Functional Programming Paradigms
Then later we want to test every member of a list to see
if it is even:

isEven :: Integer -> Bool
isEven x = x `mod` 2 == 0

isEvenList :: [Integer] -> [Bool]
isEvenList [] = []
isEvenList (x:xs) = (isEven x):(isEvenList xs)

Main> isEvenList [3,4]
[False,True]

Functional Programming Paradigms
Hm... these look similar:

incr :: Integer -> Integer
incr x = x + 1

incrList :: [Integer] -> [Integer]
incrList [] = []
incrList (x:xs) = (incr x):(incrList xs)

isEven :: Integer -> Bool
isEven x = x `mod` 2 == 0

isEvenList :: [Integer] -> [Bool]
isEvenList [] = []
isEvenList (x:xs) = (isEven x):(isEvenList xs)

What to do? Clearly, we should write a function that keeps the common elements
and abstracts out the differences using parameters/variables.

Functional Programming Paradigms
But to abstract out the common core of this paradigm, and make parameters of the
differences, we have to

o Parameterize the types using polymorphism and type variables
o Parameterize the function by allowing a function to be passed as a

parameter.

isEven :: Integer -> Bool
isEven x = x `mod` 2 == 0

isEvenList :: [Integer] -> [Bool]
isEvenList [] = []
isEvenList (x:xs) = (isEven x):(isEvenList xs)

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = (f x):(map f xs)

isEvenList = map isEven

Functional Programming Paradigms
Map is a common function and is defined in the Prelude (with built-in lists):

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = (f x):(map f xs)

Main> map incr [3,5]
[4,6]

Main> map times2 [3,5]
[6,10]

Functional Programming Paradigms
Ok, here is another common paradigm: filter a list by only allowing elements that
satisfy some predicate (Boolean test):

isEven :: Integer -> Bool
isEven x = x `mod` 2 == 0

filterEvenList :: [Integer] -> [Integer]
filterEvenList [] = []
filterEvenList (x:xs) | isEven x = x:(filterEvenList xs)

| otherwise = filterEvenList xs

Main> filterEvenList [2,3,4]
[2,4]

Functional Programming Paradigms
We abstract out the common core of this algorithm to obtain another common
function defined in the Prelude:

isEven :: Integer -> Bool
isEven x = x `mod` 2 == 0

filterEvenList :: [Integer] -> [Integer]
filterEvenList [] = []
filterEvenList (x:xs) | isEven x = x:(filterEvenList xs)

| otherwise = filterEvenList xs

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x:(filter p xs)

| otherwise = filter p xs

Main> filter isEven [2,3,4]
[2,4]

Functional Programming Paradigms
So we have demonstrated the first in our list of desirable features for functional
programming: Functions can be

o passed as parameters
o stored in data structures
o manipulated by other functions
o represented as values without having to assign to a name.

How about storing in data structures? No problem in Haskell!

Suppose we want to apply a list of functions to a list of values?

[incr,times2,decr]

[4,5,9]

[5,10,8]

Functional Programming Paradigms
This is not a standard Prelude function, but easy to write!
Of course it should be polymorphic:

applyList :: [a -> b] -> [a] -> [b]
applyList [] _
applyList _ []
applyList (f:fs) (x:xs) = (f x):(applyList fs xs)

Main> funcList = [incr,times2,decr]

Main> argList = [4,5,9]
Main> applyList funcList argList
[5,10,8]

Functional Programming Paradigms
And then there is nothing to prevent us from manipulating functions like we
would any other “value” that gets stored in a data structure:

Main> funcList = [incr,times2,decr]

Main> argList = [4,5,9]

Main> f = head funcList
Main> f 8
9

Main> applyList (tail funcList) (tail argList)
[10,8]

Main> (head (tail funcList)) (last argList)
18

This is just a consequence of
referential transparency: the meaning
of an expression is unchanged if we
replace a subexpression by an
equivalent subexpression.

Lambda Expressions in Haskell
Ok, onward! How do we deal with the “value” of a function separate from a
identifier bound to a value?

3 [5] ‘a’ “Hi there”

Main> x = 3

Main> lst = [5]

Ordinary data values don’t HAVE to have a name: they exist separately from
names, and are bound to a name when necessary. This is absolutely necessary
during ordinary programming: we pass values to functions without having to name
them (unless they enter the function):

Main> incr 4
5

Can we treat functions the same way? Well, in Haskell, of course you can.... (also
in Python)....

Lambda Expressions in Haskell
Haskell allows you to write lambda expressions to represent the computational
content of a function separate from its name. What’s left? The list of parameters
and the body of the function! These are sometimes called anonymous functions,
but the term lambda expression is standard:

\<parameter> -> <body of function>

Main> f = \x -> x + 1
Main> f 4
5
Main> (\x y z -> x + y*z) 3 4 5
23
Main> (\x -> x + ((\y -> y * 2) 6)) 10
22

Perhaps you have seen this in Python:

Or math notation:
!x. x+1

Lambda Expressions in Haskell
One very useful feature of Haskell lambda expressions is that you can use patterns
as the “bound variable,” but you have to watch out for non-exhaustive
patterns, which will cause a warning!
Main> (\(x,y) -> x + y) (3,4)
7
Main> (\(x:xs) -> 2*x) [2,3,4]

<interactive>:135:2: warning: [-Wincomplete-uni-patterns]
Pattern match(es) are non-exhaustive
In a lambda abstraction: Patterns not matched: []

4

If you want to do multiple cases in a lambda, you'll have to use
a case statement:

describe :: [a] -> String
describe = \xs -> case xs of

[] -> "empty"
[x] -> "singleton"
_ -> ”big!"

Lambda Expressions in Haskell
One of the main uses of such anonymous functions is to avoid the use of
separately-defined “helper functions” in functions such as map and filter:

Main> map (\x -> x + 1) [2,3,4]
[3,4,5]

Main> filter (\x -> x `mod` 2 == 0) [2,3]
[2]

or in any place where the name of a function is not really the point:

Main> funcList = [(\x -> x + 1),(\z -> z * 2)]

Main> applyList funcList [2,5]
[3,10]

Higher-order Programming Paradigms
Functions can be manipulated by other functions/operators to create new
functions. In mathematics the most common such operator is function
composition:

f o g (x) = f(g(x))

Function composition in Haskell:

incr x = x + 1
times2 x = x * 2

plus1times2 = times2 . incr

Main> incr 2
3
Main> times2 3
6
Main> plus1times2 2
6

Function composition operator in
Haskell is the period.

Reading: Hutton Ch. 7.5

Higher-order Programming Paradigms
There are many other functions which manipulate functions in useful ways... Here
are a couple of my favorites!

-- exchange the order of arguments
-- for a binary function

flip :: (a -> b -> c) -> (b -> a -> c)
flip f = \y x -> f x y

Main> exp = flip (^)
Main> exp 2 3
9

Reading: Hutton Ch. 7.5

Higher-order Programming Paradigms
Function slices allow you to apply a binary infix function to one argument, leaving the other
as a parameter:

Main> times2 = \x -> x * 2
Main> times2 4
8

Main> times3 = (*3)
Main> times3 4
12
Main> (*2) ((1+) 6)
14

Main> add0 = (`append` 0)
Main> add0 [2,4,0]

Main> map (`div` 2) [5,3]
[2,1]

Reading: Hutton Ch. 7.5

Beta Reduction and Let Expressions

Recall: a lambda expression represents an anonymous function:

makePair :: a -> b -> (a,b)
makePair x y = (x,y)

makePair x = \y -> (x,y)

makePair = \x -> \y -> (x,y)

Main> makePair 3 True
(3,True)

By referential transparency, we can simply use the lambda expression and apply it
directly to arguments:

Main> (\x -> \y -> (x,y)) 3 True
(3,True)

Beta Reduction and Let Expressions
We will study this much more in a few weeks, when we start to think about how
to implement functional languages, but for now, we just define the concept of
Beta-Reduction, which is simply substituting an argument for its parameter:

((\x -> <expression>) <argument>)

=> <expression> with x replaced by <argument>

Examples:

Main> (\x -> (x,x)) 4
(4,4)

Main>(\x -> [3,x,9]) 4
[3,4,9]
Main>(\x -> Just x) "hi"
Just "hi"
Main>(\x -> 5) 6
5

Main> (\x -> (\y -> (x,y))) 5 True
(5,True)

Main>(\x y -> [3,x,y]) 4 9
[3,4,9]
Main>(\x y -> \z -> [x,y,z]) 2 4 9
[2,4,9]
Main> (\x -> (\x -> (x,x))) 5 True
??

Beta Reduction and Lambda Expressions
We will study this much more in a few weeks, when we start to think about how
to implement functional languages, but for now, we just define the concept of
Beta-Reduction, which is simply substituting an argument for its parameter:

((\x -> <expression>) <argument>)

=> <expression> with x replaced by <argument>

Examples:

Main> (\x -> (x,x)) 4
(4,4)

Main>(\x -> [3,x,9]) 4
[3,4,9]
Main>(\x -> Just x) "hi"
Just "hi"
Main>(\x -> 5) 6
5

Main> (\x -> (\y -> (x,y))) 5 True
(5,True)

Main>(\x y -> [3,x,y]) 4 9
[3,4,9]
Main>(\x y -> \z -> [x,y,z]) 2 4 9
[2,4,9]
Main> (\x -> (\x -> (x,x))) 5 True
(True,True)

Why??

Scope in Haskell
The scope of a variable (e.g., local variable, parameter) is the region of the
program where it is legal to refer to that variable.

Main> x

<interactive>:14:1: error: Variable not in scope: x
Main>
Main> x = 4
Main> x
4

In Java there are several kinds of scoping rules.....

Digression: Scope in Java
The scope of a variable (e.g., local variable, parameter) is the region of the
program where it is legal to refer to that variable.

Main> x

<interactive>:14:1: error: Variable not in scope: x
Main>
Main> x = 4
Main> x
4

In Java there are several kinds of scoping rules.....

Digression: Scope in Java
The scope of a variable (e.g., local variable, parameter) is the region of the
program where it is legal to refer to that variable.

Main> x

<interactive>:14:1: error: Variable not in scope: x
Main>
Main> x = 4
Main> x
4

In Java there are several kinds of scoping rules.....

Scope in Labda Expressions
The scope of a lambda parameter is the expression to the right of the ->

(\x -> <expression>)

To find the parameter associated with an instance of a variable in the expression,
look for the closest enclosing binding of the variable:

(\x -> \ys -> (length (take x ys)))

Scope of x

Scope in Lambda Expressions: Hole in Scope
To find the parameter associated with an instance of a variable in the expression, look for the
closest enclosing binding of the variable:

(\x -> \ys -> (length (take x ys)))

Some weird things can happen when there is more than one occurrence of the same variable:

Main> (\x -> ((\x -> (take x [1,2,3,4,5])) 3) ++ x) [7]
[1,2,3,7]

Main>(\x -> (\x -> (x,x))) 5 True
(True,True)

Hole in scope of outer x

Digression: Scope in Java
Java allows multiple declarations of the same variable if one is a field and one is a local variable
(either a parameter or a local variable), creating a hole in the scope of the field declaration:

Digression: Scope in Java
But Java does NOT allow multiple declarations (and hence avoids the hole in scope issue)
for two local variables:

Digression: Scope in Java
But Java does NOT allow multiple declarations (and hence avoids the hole in scope issue)
for two local variables:

Digression: Scope in C
C allows multiple declarations without many restrictions:

Let Expressions in Haskell
In Haskell we create local variables using let:

(let x = <expr1> in <expr2>)

cylinder r h =
let sideArea = 2 * pi * r * h

topArea = pi * r ^2
in sideArea + 2 * topArea

let sq x = x * x in (sq 5, sq 3, sq 2)

=> (25,9,4)

let x = 5
in let y = 2 * x

in let z = x + y
in (\w -> x * y + z) 10

=> 65

Scope of local variables

Equivalent to a lambda application:

((\x -> <expr2>) <expr1>)

Except that you can have multiple
bindings in the same let.

Let Expressions in Haskell
Haskell let’s you define local variables any time you want with let (and where),
and therefore hole in scope issues become relevant.

Notice the great flexibility of Haskell and the referential transparency principle:
You can use these kinds of expressions nearly anywhere!

(let sq = (\x -> x*x) in \x -> (x,sq x)) 5

=> (5,25)

(\x -> case x of
1 -> \x -> x + 1
2 -> \x -> x * 2
_ -> \x -> x) 2 6

=> 12

Modules
“A Haskell module is a collection of related functions, types and typeclasses. A
Haskell program is a collection of modules where the main module loads up the
other modules and then uses the functions defined in them to do something. Having
code split up into several modules has quite a lot of advantages. If a module is
generic enough, the functions it exports can be used in a multitude of different programs.
If your own code is separated into self-contained modules which don't rely on each

other too much (we also say they are loosely coupled), you can reuse them later on.
It makes the whole deal of writing code more manageable by having it split into
several parts, each of which has some sort of purpose.” – Learn You a Haskell

Using modules

import Prelude -- Import everything from the module Prelude
-- If you have no imports, Prelude is imported
-- by default.

import Prelude (Show,undefined) -- Import ONLY Show and undefined

import Prelude hiding (map, filter) -- Import everything EXCEPT map and filter

Modules
Creating modules

Use the following syntax in the first line of your file to create a module; the
name must be the same as the file (without the .hs):

There is no way to hide only some names from being exported from a module. You
have to list the names you DO want to export. You can only using the keyword
hiding in an import statement.

For now, just remember to put all modules in the
same directory as the code where they will be
imported.....

Modules
For now, just remember to put all modules in the same directory as the code where they
will be imported.....

Modules
For now, just remember to put all modules in the same directory as the code where they
will be imported.....

Modules: Qualified Imports
“There is an obvious problem with importing names directly into the namespace of module.
What if two imported modules contain different entities with the same name? Haskell solves
this problem using qualified names. An import declaration may use the qualified keyword to
cause the imported names to be prefixed by the name of the module imported. These prefixes
are followed by the `.' character without intervening whitespace.”
– https://www.haskell.org/tutorial/modules.html

Modules: Qualified Imports with Local Names

