CS 320: Concepts of Programming Languages

Wayne Snyder
Computer Science Department
Boston University

Lecture 06: Programming with Functions

o Functions as First-Class Values

Examples of functional programming: Map and Filter
Lambda Expressions

Functions on functions

Modules

o O O O

Reading: Hutton Ch. 4, beginning of Ch. 7

Programming with Functions

In functional programming, we want to treat functions as “first-class values,” i.e.,
having the same “rights” as any other kind of data, i.e, functions, like data, can be

passed as parameters
stored in data structures
represented as values without having to assign to a name.

O O O O

manipulated by other functions to create new functions

In most programming languages, functions are not treated in this way, but we
will find that in Haskell this is pursued to the greatest extend possible.

This opens up a world of possibilities for algorithms that are not possible in other
languages; often these algorithms are more concise and elegant than in other
languages. Of course this is a matter of taste! We will at least explore this
possibility, and add to your toolkit of possibilities for programming, and you
make up your mind after the course is over!

Functional Programming Paradigms

Let us first consider what it would mean to allow functions to be passed as
parameters... suppose we wanted to increment every member of an Integer list:

incr :: Integer -> Integer

incr x = x + 1

incrList :: [Integer] -> [Integer]
incrList [] = []

incrlist (x:xs8) = (incr X):(incrlList xs)

Main> incrList [3,4]
[4,5]

passed as parameters

stored in data structures

represented as values without having to assign to a name.
manipulated by other functions

O O O O

Functional Programming Paradigms

Then later we want to test every member of a list to see
if it is even:

1sEven :: Integer -> Bool
isEven x = x mod 2 == (

isEvenList :: [Integer] -> [Bool]
i1sEvenlist [] = []
i1sEvenlList (xXx:xs) = (1sEven x): (isEvenlist xs)

Main> isEvenlist [3,4]
[False, True]

passed as parameters

stored in data structures

represented as values without having to assign to a name.
manipulated by other functions

O O O O

Functional Programming Paradigms

Hm... these look similar:

incr :: Integer -> Integer

incr x = x + 1

incrlList :: [Integer] -> [Integer]

incrList [] = []

incrlList (x:xs) = (incr X): (incrList xs)
isEven :: Integer -> Bool

isEven x = x mod 2 == 0

isEvenList :: [Integer] -> [Bool]

isEvenList [] = []

isEvenlList (x:xs) = (i1sEven Xx): (isEvenlList xs)

What to do? Clearly, we should write a function that keeps the common elements
and abstracts out the differences using parameters/variables.

passed as parameters

stored in data structures

represented as values without having to assign to a name.
manipulated by other functions

O O O O

Functional Programming Paradigms

But to abstract out the common core of this paradigm, and make parameters of the
differences, we have to

o Parameterize the types using polymorphism and type variables

o Parameterize the function by allowing a function to be passed as a
parameter.

isEven :: Integer -> Bool
isEven x = x mod 2 == 0

isEvenList :: [Integer] -> [Bool]
isEvenlList [] = []
isEvenlList (x:xs) = (isEven x): (isEvenlist xs)

map :: (a -> b) -> [a] -> [b]
map £ [] = []
map £ (x:xs) = (f x): (map £ xs)

isEvenlList = map isEven

o passed as parameters
o stored in data structures

Functio na,]_ Pr Ogr amming Paradigms o represented as values without having to assign to a name.

o manipulated by other functions

Map is a common function and is defined in the Prelude (with built-in lists):

map :: (a -> b) -> [a] -> [b]

map £ [] = []
map £ (x:xs) = (f x): (map £ xs)

Main> map incr [3,5]
[4, 0]

Main> map times2 [3, 5]
[6,10]

YV V ¥V V VY

map () >

5’656666

passed as parameters

stored in data structures

represented as values without having to assign to a name.
manipulated by other functions

O O O O

Functional Programming Paradigms

Ok, here is another common paradigm: filter a list by only allowing elements that
satisfy some predicate (Boolean test):

isEven :: Integer -> Bool

isEven x = X mod 2 == 0

filterEvenlList :: [Integer] -> [Integer]

filterEvenlList [] = []

filterEvenlist (x:xs) | 1sEven x = x:(filterEvenlist xs)
| otherwise = filterEvenlList xs

Main> filterEvenlList [2,3,4]
[2,4]

passed as parameters

stored in data structures

represented as values without having to assign to a name.
manipulated by other functions

O O O O

Functional Programming Paradigms

We abstract out the common core of this algorithm to obtain another common
function defined in the Prelude:

isEven :: Integer -> Bool

isEven x = x mod 2 ==

filterEvenlList :: [Integer] -> [Integer]

filterEvenlList [] = []

filterEvenlList (x:xs) | 1sEven x = x:(filterEvenlist xs)
| otherwise = filterEvenlList xs

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x x: (filter p xs)
| otherwise = filter p xs

Main> filter isEven [2,3,4]
[2,4]

passed as parameters

stored in data structures

represented as values without having to assign to a name.
manipulated by other functions

Functional Programming Paradigms

O O O O

So we have demonstrated the first in our list of desirable features for functional
programming: Functions can be

o passed as parameters

o stored in data structures

o manipulated by other functions

o represented as values without having to assign to a name.

How about storing in data structures? No problem in Haskell!

Suppose we want to apply a list of functions to a list of values?

[incr, timesZ, decr] incr :: Integer —> Integer
incr x = x +1

(4,5, 9] decr :: Integer —> Integer
decr x = x -1

[5,10, 8] times2 :: Integer -> Integer
times2 x = x *x 2

passed as parameters
stored in data structures

Functiona,]. Programming Paradigms 2 represented as values without having to assign to a name.
o manipulated by other functions
This is not a standard Prelude function, but easy to write!

Of course it should be polymorphic:

applyList :: [a -> b] -> [a] -> [Db]

applyList [] _

applyList []

applyList (f:fs) (x:xs) = (f x):(applyList fs xs)

Main> funclist = [incr,times?2,decr]

Main> argList - [4’ 5' 9] incr :: Integer —> Integer
Main> applyList funcList arglList incr x = x +1

[5,10,8] decr :: Integer —> Integer

decr x = x - 1

times2 :: Integer —> Integer
times2 x = x *x 2

passed as parameters

stored in data structures

represented as values without having to assign to a name.
manipulated by other functions

O O O O

Functional Programming Paradigms

And then there is nothing to prevent us from manipulating functions like we
would any other “value” that gets stored in a data structure:

Main> funclist = [incr,times?2,decr]

_ . This is just a consequence of
Main> argbist = [4,5,9] referential transparency: the meaning

. . of an expression is unchanged if we
Main> £ = head funclist

Main> f 8
9

replace a subexpression by an
equivalent subexpression.

Main> applyList (tail funcList) (tail arglList)
[10,8]

Main> (head (tail funcList)) (last arglList)
18

passed as parameters
L amb da EXP re S S 10 n S 1 n H aS kell stored in data structures

represented as values without having to assign to a name.
manipulated by other functions

O O O O

Ok, onward! How do we deal with the “value” of a function separate from a
identifier bound to a value?

3 [5] ‘a’ “Hi there”
Main> x = 3
Main> 1lst = [5]
Ordinary data values don’t HAVE to have a name: they exist separately from
names, and are bound to a name when necessary. This is absolutely necessary
during ordinary programming: we pass values to functions without having to name

them (unless they enter the function):

Main> 1ncr 4
5

Can we treat functions the same way? Well, in Haskell, of course you can.... (also
in Pvthon)....

passed as parameters

stored in data structures

represented as values without having to assign to a name.
manipulated by other functions

Lambda Expressions in Haskell

o O O O

Haskell allows you to write lambda expressions to represent the computational
content of a function separate from its name. What’s left? The list of parameters
and the body of the function! These are sometimes called anonymous functions,
but the term lambda expression is standard:

\<parameter> -> <body of function>

Main> f = \x -> x + 1

Main> f 4
5
Main> (\x y z -=> x + y*z) 3 4 5
23
Main> (\x -> x + ((\y => vy * 2) 6)) 10
22
script.py
Perhaps you have seen this in Python: 1 # Program to show the use of lambda functions
2
3 double = lambda x: x * 2
Or math notation: . Output: 10
).X <+1 6 print(double(5))

Lambda Expressions in Haskell

One very useful feature of Haskell lambda expressions is that you can use patterns
as the “bound variable,” but you have to watch out for non-exhaustive
patterns, which will cause a warning!

Main> (\(x,y) -> x + vy) (3,4)
7
Main> (\(x:xs) -> 2*x) [2,3,4]

<interactive>:135:2: warning: [-Wincomplete-uni-patterns]
Pattern match(es) are non-exhaustive
In a lambda abstraction: Patterns not matched: []

If you want to do multiple cases in a lambda, you'll have to use
a case statement:

describe :: [a] -> String
describe :: [a] -> String describe [] = "empty"
describe = \xs -> case xs of describe [x] = "singleton"
[1] -> "empty" describe = "big!"

[x] —-> "singleton"
-> "big!"

Lambda Expressions in Haskell

One of the main uses of such anonymous functions is to avoid the use of
separately-defined “helper functions” in functions such as map and filter:

Main> map (\x -> x + 1) [2,3,4]
[3,4,5]

Main> filter (\x -> x "mod 2 == 0) [2,3]
[2]

or in any place where the name of a function is not really the point:
Main> funclist = [(\x -—> x + 1), (\z -> z * 2)]

Main> applyList funcList [2,5]
[3,10]

Higher-order Programming Paradigms Reading: Hutton Ch. 7.5

Functions can be manipulated by other functions/operators to create new
functions. In mathematics the most common such operator is function
composition:

X t Y 8 Z
o~ "'\\ ,/"'___-"\\ //""-_ _-"‘\\
feg (x) = f£(g(x)) VP S RN GIN
Function composition in Haskell: | T 3T ,I
/ o _l > 4 — ‘I——I~— » Il /
\ d—F— / \
\ \\ // \. / \ . y,
ilncr x = x + 1 _ _
times?2 x = x * 2
plusltimes?2 = timesZ2 ._1ncr
Main> incr 2
3 Function composition operator in
Main> times?2 3 Haskell is the period.

6
Main> plusltimes? 2

6

Higher-order Programming Paradigms Reading: Hutton Ch. 7.5

There are many other functions which manipulate functions in useful ways... Here
are a couple of my favorites!

—— exchange the order of arguments
- = for a binary function

flip :: (a > b ->¢) -> (b -> a -> ¢)
flip £ = \y x -> £ x vy

Main> exp =
Main> exp 2
9

flip ()
3

Higher-order Programming Paradigms Reading: Hutton Ch. 7.5

Function slices allow you to apply a binary infix function to one argument, leaving the other
as a parameter:

Main> times2?2 = \x -> x * 2
Main> times2 4

8

Main> times3 = (*3)

Main> times3 4

12

Main> (*2) ((1+) 6)
14

Main> add0 = (append O0)
Main> addO [2,4,0]

Main> map (div: 2) [5, 3]
[2,1]

Beta Reduction and Let Expressions

Recall: a lambda expression represents an anonymous function:

makePair :: a -> b -> (a,b)
makePalr x y = (x,VY)
makePair x = \y -> (X,V)

makePair = \x -> \y -> (X,V)

Main> makePair 3 True
(3, True)

By referential transparency, we can simply use the lambda expression and apply it
directly to arguments:

Main> (\x -> \y -> (x,y)) 3 True
(3, True)

Beta Reduction and Let Expressions

We will study this much more in a few weeks, when we start to think about how
to implement functional languages, but for now, we just define the concept of
Beta-Reduction, which is simply substituting an argument for its parameter:

((\x -> <expression>)

<argument>)

=> <expression> with x replaced by <argument>

Examples:

Main>
(4,4)

Main> (\x ->
[3,4,9]
Main> (\x -> Just x)
Just "hi"

Main> (\x -> 5) 6

5

(\x -> (x,x)) 4
[3,%x,9]) 4

"hi"

Main> (\x -> (\y -> (x,y))) 5 True
(5, True)

Main>(\x vy -> [3,x,v]) 4 9

[3,4,9]

Main> (\x v -> \z -> [X,Vy,z]) 2 4 9
[2,4,9]

Main> (\x -> (\x -> (x,x))) 5 True
?7?

Beta Reduction and Lambda Expressions

We will study this much more in a few weeks, when we start to think about how
to implement functional languages, but for now, we just define the concept of
Beta-Reduction, which is simply substituting an argument for its parameter:

((\x -> <expression>)

<argument>)

=> <expression> with x replaced by <argument>

Examples:

Main>
(4,4)

Main> (\x ->
[3,4,9]
Main> (\x -> Just x)
Just "hi"

Main> (\x -> 5) 6

5

(\x -> (x,x)) 4
[3,%x,9]) 4

"hi"

Main> (\x -> (\y -> (x,y))) 5 True
(5, True)

Main> (\x v -> [3,x%x,vy]) 4 9

[3,4,9]

Main> (\x v -> \z -> [X,Vy,z]) 2 4 9
[2,4,9]

Main> (\x -> (\x -> (x,x))) 5 True

(True, True)

Why??

Scope in Haskell

The scope of a variable (e.g., local variable, parameter) is the region of the
program where it is legal to refer to that variable.

Main> x

<interactive>:14:1: error: Variable not in scope: x
Main>

Main> x = 4

Main> x

4

In Java there are several kinds of scoping rules.....

Digression: Scope in Java

The scope of a variable (e.g., local variable, parameter) is the region of the
program where it is legal to refer to that variable.

Local Variable Names: Can be referenced from point of definition to end of {...}

static void silly(int m) { m
int 1 = 4; m i
m i
for(int j=0; j<10; j++) { m i j
int k = 2; m i j k
k =k + 1+ j; m i j k
} m i
m i
for(int j=0; j<20; j++) { m i j
int k = 9; m i j k
k =k + 1 - 3; m i j k
} m i
m i

Digression: Scope in Java

The scope of a variable (e.g., local variable, parameter) is the region of the
program where it is legal to refer to that variable.

Member names: Can be referenced ANYWHERE in the class and from outside if public

public class TestDefault {
int n;
int m = 4;

int sillyMethod(int q) {
return g + n + m + k;

}

int Kk = n + m;
int p=m+ 1;

B BB BB BB B
BIBRE 33 318 3 3
I~ ~ ~ ~ &~~~ A~
‘oc'o'o'o'o ‘oo oo

Q

Scope in Labda Expressions

The scope of a lambda parameter is the expression to the right of the —>

(\x -> <expression>)

\ }
!

Scope of x

To find the parameter associated with an instance of a variable in the expression,
look for the closest enclosing binding of the variable:

(\x -> \ys -> (length (take x ys)))

Scope in Lambda Expressions: Hole in Scope

To find the parameter associated with an instance of a variable in the expression, look for the
closest enclosing binding of the variable:

(\x -> \ys -> (length (take x ys)))
—

Some weird things can happen when there is more than one occurrence of the same variable:

- -,
-
- ~ \
- N\

Main> (\x -> ((\x -> (take % [1,2,3,4,5])) 3) ++ x) [7]

— oy

Main>(\x -> (\x -> (x,x))) 5 True
(True, True)

—

Hole in scope of outer x

Digression: Scope in Java
Java allows multiple declarations of the same variable if one is a field and one is a local variable
(either a parameter or a local variable), creating a hole in the scope of the field declaration:

public class Test

{

$javac Test.java

$java -Xmx128M -Xmsl6M Test

4
5

public int x = 1;
public static void f(int x) {

System.out.println(x);

}

public static void main(String args[])

i
{

int x = 4;
System.out.println(x);

f(5);

Digression: Scope in Java

But Java does NOT allow multiple declarations (and hence avoids the hole in scope issue)

for two local variables:

public class Test

{

public int x = 1;
public static void f(int x) {

int x = 2;
System.out.println(x);

}

public static void main(String args[])

i
{

int x = 4;
System.out.println(x);

£(5);

$javac Test.java

Test.java:6: error:

1 error

int x = 2;

IS

variable x is already defined in method f(int)

Digression: Scope in Java

But Java does NOT allow multiple declarations (and hence avoids the hole in scope issue)
for two local variables:

public class Test $javac Test.java

{ Test.java:8: error: variable x is already defined in method f(int)
public int x = 1; for(int x = 10; x <15; ++x) {

public static void f(int x) { 1 error

System.out.println(x);
for(int x = 10; x <15; ++x) {
System.out.println(x);
}
}

public static void main(String args[])
{
{

int x = 4;
System.out.println(x);

f(5);

Digression: Scope in C

C allows multiple declarations without many restrictions:

int x 5 .
int x p
int main(Q) ; .
{ int main(Q)
int x ; {
int x
(x = 1) {
("x is equal to one.\n"); int x ;
x)

"X is not equal to one.\n"); "X is equal to one.\n");

"X is not equal to one.\n");

v l’ -vi

is equal to one.
x is not equal to one.

Let Expressions in Haskell

In Haskell we create local variables using let: Equivalent to a lambda application:
(let x = <exprl> in <expr2>) ((\x -> <expr2>) <exprl>)

cylinder r h = Except that you can have multiple
let sideArea = 2 * pi * r * h bindings in the same let.

topArea = pl1 * r *2
in sideArea + 2 * topArea

Scope of local variables

let s x = x * x 1in (sg 5, sg 3, sgq 2)
=> (25,9,4)
let x =5
in let yv = 2 * x
in let z = x + vy

in (\w -> x * y + z) 10

=> 65

Let Expressions in Haskell

Haskell let’s you define local variables any time you want with let (and where),
and therefore hole in scope issues become relevant.

Notice the great flexibility of Haskell and the referential transparency principle:
You can use these kinds of expressions nearly anywhere!

(let sqg = (\x -> x*x) in \x -> (x,sgq x)) 5
=> (5,25)

(\x -> case x of
1 > \x > x + 1
2 > \x -—> x * 2
-> \x -> X) 2 6

Modules

“A Haskell module is a collection of related functions, types and typeclasses. A
Haskell program is a collection of modules where the main module loads up the

other modules and then uses the functions defined in them to do something. Having
code split up into several modules has quite a lot of advantages. If a module is

generic enough, the functions it exports can be used in a multitude of different programs.
If your own code is separated into self-contained modules which don't rely on each
other too much (we also say they are loosely coupled), you can reuse them later on.

[t makes the whole deal of writing code more manageable by having it split into

several parts, each of which has some sort of purpose.” — Learn You a Haskell

Using modules

import Prelude -- Import everything from the module Prelude
-- If you have no imports, Prelude is imported
-- by default.

import Prelude (Show,undefined) -- Import ONLY Show and undefined

import Prelude hiding (map, filter) -- Import everything EXCEPT map and filter

MOdUlCS For now, just remember to put all modules in the

same directory as the code where they will be
Creating modules imported.....

Use the following syntax in the first line of your file to create a module; the
name must be the same as the file (without the .hs):

leoe
DEeExEB 9 $ B R

module Test where

- Test.hs

—— this module allows anything defined in the module to be
—— visible outside the module.

~ Test.hs

leoce
DEeExE 9 $m0B R

module Test (map, filter) where

—— this module only allows map and filter to be visible outside the module

There is no way to hide only some names from being exported from a module. You
have to list the names you DO want to export. You can only using the keyword
hiding in an import statement.

Modules

For now, just remember to put all modules in the same directory as the code where they
will be imported.....

Insert Design Transitions Animations Slide Show Review View Acrobat Shape Format

i . -} q— - ‘ v v |AZ] = .
¥ gy
D & E X D 49 db I‘T:l @ onvert to Picture Shapes Text Arrange
imartArt Box
module Test where Format Shag
—— this module allows anything defined in the module to be Shape Opt
—— visible outside the module.
i s 8
incr 1 M Searchresull X | €S hwo01 X
i X = X
[ldecr x = x - 1 = o
[1 of 2] Compiling Test (Test.hs, interpreted)
—i——— Test.hs Top L10 (Haskell) l[2 of 2] Compiling Main (Main.hs, interpreted)
BeglnnllrlgmST““’v‘buffe;' _ Ok, two modules loaded.
2 Main.hs ‘i*Main> incr 8
v 2 9
X Y oy .
D& E ERR L = [*Main> decr 10
import Prelude 9
import Test [*Main> test
6
Main> []
test = incr 5 [ldute; here's an example for a module whos
[NON] [1 Homeworks and Labs
<> e ool EEv v O (] e3> 39 Q
Favorites Name DatelModifiod 2.2.1. [Because of the where keyword, layo
@) AirDrop B Test.hs Today at 12:24 P| 1€ is the same as that of the type; this is allo"

B Main.hs

Main.hs~ Feb 4, 2019 at 1
& iCloud Drive | & hwO2problems.hs Feb 3, 2019 at 1:
o Downloads Project.txt Feb 1, 2019 at 2:

@ R " » [HuttonExams Feb1,2019 at 1:
CEENE Teat han Feh 1 2N1Q at 1

#™; Applications ne module keyword is omitted, all of the names bc
ote that the name of a type and its constructors hav

sible. The names in an export list need not be local

Modules

For now, just remember to put all modules in the same directory as the code where they
will be imported.....

DEExEs¥0BR B | R =5
mOdUl_e Test where Picture Shapes ';eoxxt Arrange
—— this module allows everything declared in this
—— file to be visible to any file that imports it.[]
incr x = x +1
decr x = x -1 ime directory as the code where they

[NON) Homeworks and Ealbs — ghc -B/Library/Frameworks/GHC.framework/Vers
*Main> :r
[2 of 2] Compiling Main (Main.hs, interpreted)
0Ok, two modules loaded.
b *Main> incr 4
i Ay 5

DeEExds«smbBME sMain> decr 5
import Prelude 3
import Test hiding (decr) *Main>

[*Main>

[*Main>
decr x = x - 2 *Main>

| [*Main>

4 *Main> I

1e; here's an example for a module whos:
—:——— Main.hs Top L4 (Haskell) |

Wrote /Users/snyder/Dropbox (BOSTON UNIVERSITY)/Documents/Teaching/CS320/Wez

sb/Homeworks and Labs/Main.hs i
) AIrDTOp g vian > wday at 2:10 PM 76 bytes Haskel
o ﬁ | g Test.hs Today at 2:07 PM 165 bytes Haskel

te Modified v Size Kind

#Ms Annliratinne

Modules: Qualified Imports

“There is an obvious problem with importing names directly into the namespace of module.
What if two imported modules contain different entities with the same name? Haskell solves

this problem using gualified names. An import declaration may use the qualified keyword to
cause the imported names to be prefixed by the name of the module imported. These prefixes

are followed by the *.' character without intervening whitespace.”
— hteps://www.haskell.org/tutorial/modules.html

THE———

D B . X ‘] CQ :ﬁ; I_—tJ IE ‘1 rec X E hw01 x | €) Spring-20 x | ull Gradescoi ™
module Test where[] q
—— this module allows anything defined in the module to be © Gitrub nstructors E CS Dept EJ Forms > B
—— visible outside the module. brt list need not be local to the exporting module; any name in s¢
incr x =x +1
decr x = x -1

® [) Homeworks and [abs — ghc -B/Library/Frameworks/GHC.framework/Versions/8.2.2-x8

*Main> decr 9

<interactive>:262:1: error:

n Variable not in scope: decr :: Integer —> t
D@0 vmbBE ot 21 conptis .

[1 of 2] Compiling Test (Test.hs, interpreted)
import Prelude [2 of 2] Compiling Main (Main.hs, interpreted)
import qualified Test 0k, two modules loaded.

*Main> incr 5
incr x = X + 2 7

*Main> Test.incr 5

| |:| 6

' #Main> I

e

—+i——— Main_he Tanmila (Hackel1) |very use. Others prefer short names and only use qualifiers -

Modules: Qualified Imports with Local Names

DeExHe 0B

module Test where[]

—— visible outside the module.

1l
x
+
=

incr Xx

I
x
|
[y

decr x

DeEExHS B R

import Prelude
import qualified Test as T[]

incr x = x + 2

—:——— Main.hs Top L2

—— this module allows anything defined in the module to be

Irec X | €5 hwO1 x| ©

) GitHub Instructors CSC
ort list need not be local to the e

® @ Homeworks and Labs — ghc -B/Library/Frameworks;

(Haskell)

*Main> incr 5

7

*Main> Test.incr 5

6

*Main> :r

[2 of 2] Compiling Main (Main.hs, inte
Ok, two modules loaded.
*Main>

*Main>

*Main>

*Main> T.incr 5

6

Main> [

—

|Very use. Others prefer sho

sb/Homeworks and Labs/Main.hs

Wrote /Users/snyder/Dropbox (BOSTON UNIVERSITY)/Documents/Teaching/CS320/We#

mported from more than or

allowed: an entity can be imported by various routes without conflict. The compiler knows whether entities from different modules are actually the san

